本帖最后由 葉知秋 于 2009-7-26 14:20 編輯
熱應(yīng)激條件下肉鴨的營(yíng)養(yǎng)
萬(wàn)建美 四川農(nóng)業(yè)大學(xué)動(dòng)物營(yíng)養(yǎng)研究所
摘要:
在我國(guó)的大多數(shù)地區(qū),家禽生產(chǎn)的最大限制因素是氣候條件。高溫,特別是伴有高濕的情況下,將對(duì)家禽造成應(yīng)激,最終導(dǎo)致生產(chǎn)成績(jī)降低。我國(guó)是肉鴨生產(chǎn)大國(guó),約占世界鴨肉總產(chǎn)量的67%。而肉鴨的養(yǎng)殖地區(qū)大多為夏季高溫、或高溫高濕地區(qū),由于采用現(xiàn)代化的飼養(yǎng)管理模式,使得傳統(tǒng)的水禽降溫方式已經(jīng)不再經(jīng)濟(jì)適用。雖然在家禽飼養(yǎng)舍施的防暑降溫方面已經(jīng)有了很大的改善,但是在炎熱氣候下合理的營(yíng)養(yǎng)供給仍然顯得十分重要。本文主要介紹熱應(yīng)激條件下肉鴨的生理狀況及如何通過(guò)營(yíng)養(yǎng)調(diào)控降低熱應(yīng)激。
關(guān)鍵詞:肉鴨;熱應(yīng)激;能量;蛋白;營(yíng)養(yǎng)需要
1. 前言
由于鴨喙的特點(diǎn),飼喂顆粒飼糧可以有效的防止肉鴨對(duì)飼料的浪費(fèi)。與粉料相比,顆粒飼料可節(jié)省約10%的飼料,同時(shí)飼料轉(zhuǎn)化率提高10%(Chen和Huang,1993;Leeson和Summers, 1997)。建議肉鴨顆粒料的直徑在0-3周齡時(shí)為0.15 cm(Hu,2001)。而在育肥期顆粒飼糧的直徑和長(zhǎng)度分別為0.3 cm和1 cm。此外,肉鴨是對(duì)黃曲霉毒素最為敏感的家養(yǎng)動(dòng)物之一,因此監(jiān)測(cè)并減少飼料中黃曲霉毒素的含量在氣候炎熱的地區(qū)非常重要,特別是在夏季時(shí)更應(yīng)注意。
肉鴨的品種主要有騾鴨、北京鴨和美洲家鴨。騾鴨是臺(tái)灣鴨肉消費(fèi)的主要來(lái)源,約占鴨肉消費(fèi)量的80%。因此,臺(tái)灣對(duì)騾鴨的營(yíng)養(yǎng)需要研究相對(duì)最為透徹。由于騾鴨在3至10周之間的飼料效率變化很大,為了節(jié)省飼養(yǎng)成本,建議將育肥期分為3-7周和7-10周兩個(gè)階段(Lin等,2004,2005)。無(wú)論是0-3周齡,還是3-7周齡的騾鴨,當(dāng)飼糧代謝能水平在2600-3050 kcal/kg之間變化時(shí),騾鴨都能通過(guò)調(diào)節(jié)采食量而達(dá)到最佳的增重。所以,飼糧能量水平的設(shè)定主要取決于市場(chǎng)原料的價(jià)格。Shen(1988,2001)報(bào)道,飼糧能量每增加150 kcal/kg,飼料效率就提高4-6%,然而體脂沉積量也隨著飼糧代謝能水平的提高而增加。0-3周齡和3-10周齡的建議的粗蛋白水平分別為18.7%和15.4%。當(dāng)使用玉米豆粕型飼糧時(shí),就特別注意賴(lài)氨酸、蛋氨酸及色氨酸的需要量,因?yàn)檫@三種氨基酸在該類(lèi)型的飼糧中較缺乏。此外還應(yīng)特別注意煙酸是否缺乏。騾鴨的營(yíng)養(yǎng)需要具體見(jiàn)附表1 。
盡管北京鴨主要生產(chǎn)于亞洲國(guó)家,但是熱帶和亞熱帶地區(qū)對(duì)北京鴨營(yíng)養(yǎng)需要的研究并不多。與騾鴨及美洲家鴨相比,北京鴨胴體可沉積較高比例的脂肪,因而其營(yíng)養(yǎng)需要也不同于前兩種類(lèi)型的肉鴨。NRC(1994)給出了北京鴨的營(yíng)養(yǎng)需要量。
而美洲家鴨的營(yíng)養(yǎng)需要?jiǎng)t主要是由法國(guó)完成的。美洲家鴨的一個(gè)重要特點(diǎn)是公鴨和母鴨體重相差很大。這種現(xiàn)在在4-5周齡時(shí)開(kāi)始顯現(xiàn)(Scott和Dean, 1991)。因此在制定美洲家鴨的營(yíng)養(yǎng)需要時(shí),公母鴨間體重的差異必需予以考慮。在實(shí)際生產(chǎn)中,公鴨和母鴨因其營(yíng)養(yǎng)需要的不同,通常在7周齡后就被分開(kāi)飼養(yǎng)(Leclercq等,1987)。美洲家鴨及其與普通鴨的雜交品種對(duì)炎熱環(huán)境的適應(yīng)能力比北京鴨強(qiáng)(Chen和Huang,1993),即使在完全沒(méi)有戲水和游泳的禽舍內(nèi)養(yǎng)殖也能生長(zhǎng)良好。Chen和Huang(1993)等建議,在炎熱條件下飼糧的代謝能水平不要超過(guò)3000 kcal/kg。0-3周齡和3-7周齡的ME/CP分別為158和187。7周齡以后,公鴨和母鴨的ME/CP分別為214和230。飼糧代謝能和粗蛋白水平不平衡可導(dǎo)致美洲家鴨翅膀側(cè)滑。美洲家鴨的營(yíng)養(yǎng)需要具體見(jiàn)附表2 。
在熱應(yīng)激時(shí),肉鴨的生理反應(yīng)和生產(chǎn)性能都會(huì)發(fā)生很大的變化。舍飼條件下,北京鴨的最適溫度范圍是10-15℃(Hagen and Heath, 1976)。當(dāng)溫度超過(guò)25℃時(shí),則會(huì)出現(xiàn)喘息(Bouverot et al.,1974)。Surendranathan等(1971)的研究表明,當(dāng)晝夜溫度在24.3-37.2℃之間變化時(shí),蛋鴨直腸溫度在白天升高,但通過(guò)在水池中戲水1 h后,直腸溫度由42.1℃降低至40.9℃。熱應(yīng)激條件下,北京鴨的腎上腺增大(Hester et al.,1981)。當(dāng)環(huán)境溫度由18.3℃增加至29℃時(shí),肉鴨的體增生降低30%(Bouverot et al., 1974)。
由于在通常的養(yǎng)殖模式下,肉鴨有較多戲水的機(jī)會(huì),因而可以減少熱應(yīng)激的不良影響。但是,Lee等(1991)研究發(fā)現(xiàn),在籠養(yǎng)條件下蛋鴨的產(chǎn)蛋性能和飼料轉(zhuǎn)化率要優(yōu)于地面放養(yǎng)可戲水的蛋鴨。這可能是籠養(yǎng)條件下能量損耗較低的結(jié)果。在現(xiàn)代養(yǎng)殖的條件下,高密度集約化養(yǎng)殖使得肉鴨的熱應(yīng)激成為不容忽視的問(wèn)題。
2. 降低熱應(yīng)激的營(yíng)養(yǎng)措施
有關(guān)降低肉鴨熱應(yīng)激的文章很少。主要的原因肉鴨的生產(chǎn)國(guó)主要在亞洲,而這一地區(qū)的水源較為豐富。在水中,鴨可以通過(guò)腳和喙散失大量的熱量(Hagen和Heath,1980;Scott和Dean,1991)。
2.1. 代謝能和粗蛋白
炎熱氣候可使肉鴨的采食量降低,從而降低生長(zhǎng)性能。Bird(1985)報(bào)道,飼養(yǎng)于英國(guó)的種鴨的采食量為230 g/天/只,而飼養(yǎng)于熱帶地區(qū)的種鴨采食量?jī)H為170 g/天/只。在10個(gè)月的時(shí)間里,其產(chǎn)蛋量和蛋重分別由210枚和87 g以上降低到不足160枚和78 g。當(dāng)把飼糧代謝能水平由2900 kcal/kg降低至2700 kcal/kg,粗蛋白水平由18%提高到21%,同時(shí)將微量養(yǎng)分的用量增加50%,使產(chǎn)蛋量和蛋重分別提高到190枚和84 g。在臺(tái)灣,養(yǎng)殖者在夏季傾向于在飼糧中加入魚(yú)粉或/和全脂大豆以改善產(chǎn)蛋鴨的生產(chǎn)性能。炎熱氣候下給北京鴨飼喂高營(yíng)養(yǎng)濃度的飼糧(0-6周齡:ME3850kcal/kg, CP 24%;7-10周齡:ME3850kcal/kg, CP 22%)可以獲得很好的生長(zhǎng)性能(Chin和Hutagalung,1984)。這可能是因?yàn)轱曃垢咧镜娘暭Z時(shí)的熱增耗較低,因而可以降低動(dòng)物的熱應(yīng)激。
2.2. 酸堿平衡
Huang等(2002)研究了飼糧電解質(zhì)平衡(DEB)對(duì)產(chǎn)蛋鴨的影響。在炎熱氣候時(shí),采食電解質(zhì)平衡值為228 meq/kg的飼糧時(shí),產(chǎn)蛋率和采食量最高,蛋殼質(zhì)量也最好。而采食電解質(zhì)平衡值為15和498 meq/kg的飼糧時(shí),生產(chǎn)性能最差。血液pH、HCO3-及堿量與飼糧DEB值間有正相關(guān)關(guān)系。在寒冷氣候時(shí),采食電解質(zhì)平衡值為324和403 meq/kg的飼糧時(shí)的生產(chǎn)性能最佳。而肉鴨飼糧最佳電解質(zhì)平衡值在200 meq/kg左右(Chen和Huang,1993)。
2.3. 維生素C
維生素C可以提高火熱氣候下家禽的生產(chǎn)性能。Lai等(2003)分別在六月和八月向騾鴨飼糧中添加不同濃度的維生素C(50-300 ppm之間)。體增重隨著維生素C添加效應(yīng)的變化在公鴨和母鴨之間表現(xiàn)出了很大的差異。添加維生素C并沒(méi)有顯著改變母鴨11周齡的體增重。然而,當(dāng)維生素C的添加水平為300 ppm時(shí),公鴨的體增重卻顯著低于對(duì)照組。而添加維生素C后,肉鴨的采食量和飼料轉(zhuǎn)化效率并不改變(Lai等,2003)。
附表 1 Recommended nutrient requirement for mule ducks as percentage or
unit per kg of diet (88% dry matter)
Nutrient
| 0–3 weeks
| 3-10 weeks
| ME, kcal/kg
| 2890
| 2890
| Crude protein, %
| 18.7
| 15.4
| Amino acids
|
|
| Arginine, %
| 1.12
| 0.92
| Histidine, %
| 0.27
| 0.22
| Isoleucine, %
| 0.66
| 0.54
| Leucine, %
| 1.31
| 1.08
| Lysine, %
| 1.10
| 0.90
| Methionine + Cystine, %
| 0.69
| 0.57
| Phenylalanine + Tyrosine, %
| 1.11
| 0.92
| Glycine + Serine, %
| 1.22
| 0.71
| Threonine, %
| 0.68
| 0.56
| Tryptophan, %
| 0.24
| 0.20
| Valine, %
| 0.80
| 0.68
| Minerals
|
|
| Calcium, %
| 0.72
| 0.72
| Nonphytate phosphorus, %
| 0.42
| 0.36
| Sodium, %
| 0.21
| 0.21
| Chloride, %
| 0.13
| 0.13
| Potassium, %
| 0.49
| 0.49
| Magnesium, mg
| 500
| 500
| Manganese, mg
| 72
| 60
| Zinc, mg
| 82
| 82
| Iron, mg
| 96
| 96
| Copper, mg
| 12
| 12
| Iodine, mg
| 0.28
| 0.28
| Selenium, mg
| 0.15
| 0.15
| Vitamins
|
|
| Vitamin A, IU
| 8250
| 8250
| D, ICU
| 600
| 600
| E, IU
| 15
| 15
| K, mg
| 3
| 3
| Thiamin, mg
| 3.9
| 3.9
| Riboflavin, mg
| 6
| 6
| Pantothenic acid, mg
| 9.6
| 9.6
| Niacin, mg
| 60
| 60
| Pyridoxine, mg
| 2.9
| 2.9
| Vitamin B12, mg
| 0.02
| 0.02
| Choline, mg
| 1690
| 1690
| Biotin, mg
| 0.1
| 0.1
| Folic acid, mg
| 1.3
| 1.3
| (Shen, 2002)
附表2.
Nutrient requirements for Muscovy ducks.
| 0-3 weeks
|
| 3-7 weeks
|
| 7 weeks-marketing
| Nutrient
| Mixed
|
| Mixed
|
| Male
|
| Female
| ME, kcal/kg
| 2800
|
| 3000
|
| 2600
|
| 2800
|
| 2800
|
| 3000
|
| 2800
|
| 3000
| Crude protein, %
| 17.7
|
| 19.0
|
| 13.9
|
| 14.9
|
| 13.0
|
| 14.0
|
| 12.2
|
| 13.0
| Amino acids, %
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Arginine
| 1.03
|
| 1.10
|
| 0.80
|
| 0.86
|
| 0.78
|
| 0.84
|
| 0.65
|
| 0.70
| Isoleucine
| 0.80
|
| 0.85
|
| 0.58
|
| 0.62
|
| 0.57
|
| 0.61
|
| 0.47
|
| 0.51
| Leucine
| 1.69
|
| 1.80
|
| 1.24
|
| 1.34
|
| 1.26
|
| 1.36
|
| 1.05
|
| 1.13
| Lysine
| 0.90
|
| 0.96
|
| 0.66
|
| 0.71
|
| 0.65
|
| 0.70
|
| 0.54
|
| 0.58
| Methionine
| 0.38
|
| 0.41
|
| 0.29
|
| 0.31
|
| 0.24
|
| 0.26
|
| 0.23
|
| 0.24
| Methionine+cystine
| 0.75
|
| 0.80
|
| 0.57
|
| 0.61
|
| 0.50
|
| 0.54
|
| 0.46
|
| 0.50
| Phenylalanine+tyrosine
| 1.57
|
| 1.67
|
| 1.15
|
| 1.23
|
| 1.15
|
| 1.24
|
| 0.96
|
| 1.03
| Threonine
| 0.65
|
| 0.69
|
| 0.48
|
| 0.51
|
| 0.24
|
| 0.26
|
| 0.38
|
| 0.41
| Tryptophan
| 0.19
|
| 0.20
|
| 0.14
|
| 0.15
|
| 0.13
|
| 0.14
|
| 0.11
|
| 0.12
| Valine
| 0.87
|
| 0.93
|
| 0.64
|
| 0.69
|
| 0.64
|
| 0.69
|
| 0.53
|
| 0.57
| Minerals:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Calcium, %
| 0.85
|
| 0.90
|
| 0.70
|
| 0.75
|
| 0.65
|
| 0.70
|
| 0.65
|
| 0.70
| Total phosphorus, %
| 0.63
|
| 0.65
|
| 0.55
|
| 0.58
|
| 0.49
|
| 0.51
|
| 0.49
|
| 0.51
| Sodium, %
| 0.15
|
| 0.16
|
| 0.14
|
| 0.15
|
| 0.15
|
| 0.16
|
| 0.15
|
| 0.16
| Chloride, %
| 0.13
|
| 0.14
|
| 0.12
|
| 0.13
|
| 0.13
|
| 0.14
|
| 0.13
|
| 0.14
| Manganese, mg
|
| 70
|
|
|
| 60
|
|
|
|
|
| 60
|
|
|
| Zinc, mg
|
| 40
|
|
|
| 30
|
|
|
|
|
| 20
|
|
|
| Iron, mg
|
| 40
|
|
|
| 30
|
|
|
|
|
| 20
|
|
|
| Vitamins:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Vitamin A, IU
|
| 8000
|
|
|
| 8000
|
|
|
|
|
| 4000
|
|
|
| D, IU
|
| 1000
|
|
|
| 1000
|
|
|
|
|
| 500
|
|
|
| E, mg
|
| 20
|
|
|
| 15
|
|
|
|
|
| –
|
|
|
| K, mg
|
| 4
|
|
|
| 4
|
|
|
|
|
| –
|
|
|
| Thiamin, mg
|
| 1
|
|
|
| –
|
|
|
|
|
| –
|
|
|
| Riboflavin, mg
|
| 4
|
|
|
| 4
|
|
|
|
|
| 2
|
|
|
| Pantothenic acid, mg
|
| 5
|
|
|
| 5
|
|
|
|
|
| –
|
|
|
| Niacin, mg
|
| 25
|
|
|
| 25
|
|
|
|
|
| –
|
|
|
| Pyridoxine, mg
|
| 2
|
|
|
| –
|
|
|
|
|
| –
|
|
|
| Vitamin B12, mg
|
| 0.03
|
|
|
| 0.01
|
|
|
|
|
| –
|
|
|
| Choline, mg
|
| 300
|
|
|
| 300
|
|
|
|
|
| –
|
|
|
| Biotin, mg
|
| 0.1
|
|
|
| –
|
|
|
|
|
| –
|
|
|
| (Leclercq 等,1987)
參考文獻(xiàn):
Bird, R.S. (1985) The future of modern duck production, breeds, and husbandry in south-east Asia. In: Farrell, D.J. and Stapleton, P. (eds) Duck Production and World Practice. University of New England, Amidale, Australia, pp. 229–237.
Bouverot, P., Hildwein, B. and LeGoff, D. (1974) Evaporative water loss, respiratory pattern, gas exchange and acid-base balance during thermal panting in Pekin ducks exposed to moderate heat. Respiration Physiology 21, 255–269.
Chen, D.T., Lee, S.R., Hu, Y.H., Huang, C.C., Cheng, Y.S., Tai, C., Poivey, J.P. and Rouvier, R. (2003) Genetic trends for laying traits in the Brown Tsaiya (Anas platyrhynchos) selected with restricted genetic selection index. Asian-Australasian Journal of Animal Sciences 16(12), 1705–1710.
Chin, D.T.F. and Hutagalung, R.I. (1984) Energy and protein requirements of Pekin broiler ducks in a tropical environment. In: Proceedings of the 8th Annual Conference of Malaysian Society of Animal Production, Malaysia, pp. 60–66.
Hagen, A.A. and Heath, J.E. (1976) Metabolic responses of white Pekin duck to ambient temperature. Poultry Science 55, 1899–1906.
Hagen, A.A. and Heath, J.E. (1980) Regulation of heat loss in the duck by vasomotion in the bill. Journal of Thermal Biology 5, 95–101.
Hester, P.Y., Smith, S.G., Wilson, E.K. and Pierson, F.W. (1981) The effect of prolonged heat stress on adrenal weight, cholesterol and corticosterone in white Pekin ducks. Poultry Science 60, 1583–1586.
Huang, S.C., Shen, T.F. and Chen, B.J. (2002) The effects of dietary electrolyte balance on the blood parameters and laying performance of laying brown Tsaiya ducks. Journal of the Chinese Society of Animal Science 31(3), 189–200.
Lai, M.K., Huang, J.F., Lin, C.Y. and Lin, R.H. (2003) Effects of ascorbic acid supplementation on growth performance and carcass traits of mule ducks in summer season. Journal of Taiwan Livestock Research 36(4), 283–290.
Leclercq, B., Blum, J.C., Sauveur, B. and Stevens, P. (1987) Nutrition of Ducks. In: Feeding of Non-ruminant Livestock, Butterworths, London, pp. 102–109. (Translation of INRA (1984) L’Alimentation des animaux monogastriques by Julian Wiseman.)
Lee, S.R., Pan, S.T., Shyu, S.T. and Chen, B.J. (1991) Study on the cage-feeding system for laying Tsaiya duck (Anas platyrhynchos var. domestica). Journal of Taiwan Livestock Research 24(2), 177–185.
Leeson, S. and Summers, J.D. (1997) Feeding programs for waterfowl. In: Leeson, S. and Summers, J.D. (eds) Commercial Poultry Nutrition, 2nd edn. University Books, Guelph, Ontario, Canada, pp. 324–340.
Lin, Y.H., Huang, A.J.F., Lin, Y.A. and Lin, C.Y. (2004) Determination of crude protein and metabolizable energy requirements in growing mule ducks derived from large Kaiya ducks. Journal of the Chinese Society of Animal Science 33 (suppl.), 237.
Lin, Y.H., Huang, J.F., Lin, C.Y., Hu, Y.H., Lin, Y.A. and Lin, C.Y. (2005) Effects of dietary protein and metabolizable energy levels of growth period on the laying performance of Brown Tsaiya ducks. Journal of the Chinese Society of Animal Science 34 (Suppl.), 255.
Lin, Y.H., Huang, J.F., Lin, C.Y., Lin, Y.A., Hu, Y.H. and Lin, C.Y. (2005) Determination of crude protein and metabolizable energy requirements in finishing mule ducks derived from large Kaiya ducks. Journal of theChinese Society of Animal Science 34 (Suppl.), 254.
NRC (National Research Council) (1994b) Nutrient requirement of ducks. In: Nutrient Requirements of Poultry, 9th edn. National Academy Press, Washington, D.C., pp. 42–43.
Scott, M.L. and Dean, W.F. (1991) Energy, protein, and amino acid requirements of ducks. In: Nutrition and Management of Ducks.M. L. Scott of Ithaca, New York, pp. 55–88.
Shen, T.F. (1988) Manual of Nutrient Requirement of Ducks. Department of Animal Science, National Taiwan University, Taipei, Taiwan.
Shen, T.F. (2001) Nutrient requirements of poultry. In: Animal Husbandry: Poultry, 2nd edn. Chinese Society of Animal Science, Taipei, Taiwan. pp. 165–196.
Shen, T.F. (2002) Review on nutrient requirements of mule and Tsaiya ducks. Scientific Agriculture 50(1, 2), 129–134.
Surendranathan, K.P. and Nair, S.G. (1971) Environmental influences on certain physiological factors in ducks (Anas platyrhynchos domesticus). The Indian Veterinary Journal 48(6), 587–592. |